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The polymerization of methyl methacrylate is accompanied by liberation of heat; 
this results in overheating of the reaction mass during production of plastics. 
The temperature distribution in the polymerizing layer is complicated by con- 
vection, which disrupts the natural temperature field. Thus, in addition to 
the stress along the sheet, local internal stresses appear that show up in op- 
eration of the product. Product quality and intensification of the polymeriza- 
tion process depend on the critical temperature gradient, which determines the 
stability threshold of the layer of polymerizing methyl methacrylate. The Ray- 
leigh--Jeffrey problem is considered for a weak viscoelastic fluid described by 
an integral rheologieal constitutive relationship. The critical Rayleigh num- 
bers are determined for stationary and oscillatory instabilities with free and 
ideally heat-conducting rigid boundaries. 

1. 
the model of [i] and referred to there as a B'-type fluid: 

t 
i Oxi Ox~ e "~" (x', t') dt' ~i~ = 2 ~ ( t -  t') Ox,--- ~ Ox,,~ . 

- - o e  

�9 = ~  N(~) e(t,_t ). d~ r (t - -  t') ~ ..... 
0 

We consider the Rayleigh--Jeffrey problem for the viscoelastic fluid described by 

(1 .1)  

(1 .2)  

(1.3) 

where e mr is the strain-rate tensor, T ik is the stress tensor, ~ is the isotropic pressure, 
gik is the conjugate metric tensor of the fixed coordinate system xi, N(T) is the relaxa- 
tion-time distribution function, x 'i = x'i(x i, t, t') is a fixed Lagrangian coordinate sys- 
tem (displacement function), and t is the current time, t > t' Equation (1.2) may be 
treated as the equation of media whose behavior at low velocities may be characterized by 
the relaxation-time spectrum. The B' fluid exhibits a positive Weissenberg effect when 
there is shear between rotating cylinders, and it has a normal-stress distribution ana- 
logous to that found in [2]. In addition, the values of N(T) have been determined for 
several real materials [3]. 

The (1.2) form of the model of the B' fluid has a drawback: it is not suited to the 
description of non-Newtonian viscosity. For our problem the strain rates are small, so 
that we may neglect anomalies of viscosity. Besides the generalization of "contravalent" 
type, there is the A' fluid, which is the "covariant" analog. 

2. In the Boussinesq approximation the equations of the perturbed state are written 
as 

Ou i _ t 0~' i O~ij 
ot ~ o~ + ~ g o  + - 7  o~---/ ( 2 . 1 )  

('-~-t --  xA ) 0 = ~uiki (2 .3)  
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Out ---- 0 (2.3) Oxi 
where i i = (0, 0, i), B is the negative temperature gradient, ~r is the thermal-conductiv- 
ity coefficient of the fluid, w', O, u i are the perturbations in the pressure, tempera- 
ture, and velocity, 0 is the density of the fluid, a is the coefficient of thermal expan- 
sion, g is the gravitational acceleration, and ~ij is the tensor representing the stress 
due to perturbed motion. 

The perturbation and temperature coefficients are written as 

uj (xi) -= u1 ~ (xs) exp [i (thx 1 + a~x2) + ptl (2 .4)  
0 (x,) = 0 ~ (xs) exp : [ i  (a~xl + azx~) + ptl (2 .5 )  

Here a~,  82 are the wave numbers, and p is the complex damping. 

The displacement functions of perturbed motion have the form 

x / = x ~ - ? a ( x i ,  x~', t, t') 
x~' = x~ -4- ~ (x~, x~', t, t') (2 .6 )  
xs* = xs + ? (x~, x / , t ,  t') 

where ~, ~, y satisfy the initial conditions 

air=t, = 0 ,  ~lt=t' = 0,  ?]t=t' ~ 0 (2.7) 

We have the system of equations 

Ox i' c~x ( 
0t" ~-uJ 0-~j - - 0  (2 .8 )  

f o r  d e t e r m i n i n g  x i ' .  

If we restrict the discussion to fluids having "short" memory, we may write 

xi' = x~ - -  (t  - -  t') u~ ( 2 . 9 )  

A f t e r  d e t e r m i n i n g  t h e  components  o f  t h e  p e r t u r b e d - m o t i o n  s t r e s s  t e n s o r  from (1 .2 )  and 
e l i m i n a t i n g  ~ ' ,  f o l l o w i n g  [4 ] ,  we a r r i v e  a t  t he  a m p l i t u d e  e q u a t i o n s  

(D ~ _ y2) [ a p r - 1 _  (i - - ~ r ) ( D '  - vDl w = Rv~T (2 .10)  
[a - -  (D  2 - -  ?~)] T = W ( 2 . 1 1 )  

Here we employ t h e  f o l l o w i n g  d i m e n s i o n l e s s  v a r i a b l e s :  

' - d - ' ' - 2 - /  ' P r = - - o •  

.R - -  ag~ d4p 2: ~ -  u t  ua d 

~0• ' - d y ,  W = ~  ( 2 . 1 2 )  

T = - ~ d '  ~ ~ pd2 D 0 ~ Oz 

*2 *2 a~ =a~d, ?~=a~ +a2 

where Pr is the Prandtl number, R is the Rayleigh number, d is the thickness of the fluid 
or 

F=• I ~N(~)d~ is the elasticity parameter, and rio is the Newtonian viscosity. layer, 
0 

3. A monotonic or oscillatory instability will arise, depending on the properties of 
the fluid. It has been established for a Newtonian fluid that the "principle of monotonic 
perturbations" is always satisfied and that the stability threshold is determined for zero 
damping. This principle is violated when there is elasticity in non-Newtonian viscoelastic 

media. 

Following [5], for the given case we may show that 

1 I 1 

Imo { i[F[2dz- t -  RT~S( tDMI~ A - T']WI ~) d z - -  R P r ' f ' F ~ l J [ 2 d z  } = 0  (3 .1 )  
o o o 

J = ( D  2 - T  ~)W, F = [ o P r  - 1 -  (I - oF) (D ~ - 7 2 ) 1 J  
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The integral (3.1) is not of fixed sign, and for R > 0 the perturbations are only 

monotonic for small P. 

4. Let us consider the solution of the problem for two free boundaries. In this 
case the boundary conditions are written as 

T = W = D ~ W =  0 ( z = 0 ,  i )  ( 4 . 1 )  

The solution satisfying (4.1) is written as 

W =  W o s i n n ~ z  ( n =  i ,  2 . . . .  ) ( 4 . 2 )  

where Wo is a constant. 

For the fundamental instability mode the damping equations are found from (2.10), 
(2.11) : 

5 s-{-~sx~ t +..l__Pprz~ + ( 1 Z ~ x  ~) z~(1--PPrz 2) = 0  
(4.3) 

x ~ = ~ + ~ 

For a Newtonian fluid, where F = 0, the values of the critical Rayleigh number and 
wave number coincide with the known values. A detailed discussion of the damping rates 
for this case is given in [4]. 

Assume Re o = 0, on the instability boundary; then letting o = i~+, we may obtain 
the conditions for appearance of an oscillatory instability. We find the dimensionless 
frequency of neutral oscillation 

~ + 2  = -  X 2 t ~ *  - -  

from (4.3); here R~ s) = X6/y 2 is the critical Rayleigh number for steady-state instability. 
The neutral-oscillation frequency is a real quantity, so that (4.4) is only valid for 
R > R~S). The oscillatory instability appears later, so that the stability threshold is 
determined by R~S). 

5. The two-rigid boundary problem cannot be solved in elementary form. Various ap- 
proaches have been suggested. Here we use the Galerkin method, as was done in [6]. Shift- 
ing the origin to the middle of the layer, we write the boundary conditions 

T = W = O W  = 0 (z = ___.i/2) ( 5 . 1 )  

for ideally heat-conducting boundaries. . . . . . .  

We seek solutions of (2.10) and (2.11) in the form 

M 

w (z) = Y, a~W~ (z) (5 .2)  
m = l  
M 

(~) = ~ ~ r ~  (z) (5.3) 

where cqn and b m are unknown coefficients. The basic functions Wm(z) and Tm(z ) must satisfy 
the boundary conditions (5.1). Here we shall only consider even solutions, as being the 
least stable. 

We take as the basic functions [7] 

eh (~t z) cos (~tr~z) 
W m (z) = ch~tm/2 cos~m 12 

Tm (z) - :  A.~ cos (2m - -  1) ~z 

(5.4) 

(5.5) 

where ~m are positive roots of the equation 

= o ( 5 , 6 )  

The amplitude coefficient A m is chosen on the basis of the normalization condition. 
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TABLE i , 

P P r  

0.00i i0 
i00 

0. i  
0.005 1.0 

i0 
t00 

0.t  
i . 0  

0.0t iO 
tO0 

OA 
1.r 

0.02 t0 
i00 

0A 
i.s 

0.05 t0 
iO0 

0.] 
�9 i.( 
t0 

100 

"~ ,  R , .  10-~ 

~3.0i t2.608 
H .62 i0.646 

16.77 50.000 
19.7i 1.697 
i4.48 0.535 
13.86 0.455 

~2.98 i2.556 
13.7i 0.438 
9.98 0.145 
9.54 O. 126 

23. |8  3. t67 
9.34 0. t i7 
6.67 0.045 
6.38 0.0404 

14.37 0.5t9 
5.0i 0.O25 
3.35 0.0i74 
3.20 0.0t7i 

9.74 0. t34 
i.9~ O.O22 
0.62 0.139 
0.3~ 0.333 

After certain manipulations we arrive at a system of 
equations in the unknown coefficients ~m' 

~1 F ~ Fr FIn ] 0 

m=l . ~=I 

( 5 . 7 )  

This reduces to algebraic equations of degree M for R, 

M 
~r (5.8) em,  # R ,Y v S -  =o 

Here we let 

E ~  = c, [D4Wm, W,~] -- c~ [D'Mm, Wn] + cs [Win, Wn] 
F~,,n- [T~, Wn], . f , ,~= [D~Tm, T , ] - - [ T , , ,  Tn]c5 
c x = ( t - - ( W ) ,  c~-- - -aPr  -x + 2 ( i - - a r ) ? ~  
Ca ---- ~pr - iT  ~ -~ (I --ffF) ?a 

q-0.5 

c4=~'~, c~=%'2-5:, [U, V I =  UV dz 
--0.5 

(5.9) 

A Nairi computer was used for numerical determination 
of the critical Rayleigh number for the first and second ap- 
proximations. For the range of parameters studied no oscil- 
latory instability was found to appear. The critical Ray" 

leigh numbers found on the assumption of oscillatory instability were large. Table 1 
shows the calculated data. A check on the critical Rayleigh number for F = 0 showed full 
agreement of our values with [5]. 

6. Knowing the specific form of the function N(T) we may go over to relationships 
valid for different models. 

Newtonian fluid [5]: 

Maxwellian fluid [8]: 

Oldroyd fluid (type B) 

N (.,) = no a (~) (6. i )  

N (x) = No6 ( x - - k ~ )  - ( 6 . 2 )  
r =L1~/~ (6.3) 

[ 6 ] :  

N (~)----- ~o~ 8(z) Jr N0 ~ 6  (z--%~) (6.4) 

r=-~- 

where k: is the relaxation time, 
function. 

Linear viscoelastic fluid [9]: 

(1 
0 

k2 is the retardation time, and 8(T) is the Dirac delta 

N0 (6.6) 

For p -- 0, no = q(0) is the maximum Newtonian viscosity. 

If p = in, then n(i~) = ~'(m) --in" is the complex viscosity, defined in the linear 

theory of viscoelasticity. 

There is a relationship between a "second-order" fluid and a B' fluid [i0]. 

We write the equation describing the second-order fluid [ii] as 

T u = --~6i~ 5 q~,eij -}7 r -5 qJaeikeh~ 
Dec. Ov k Ov~ 

(6.7) 

(6.8) 
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TABLE 2 

Pr ~q-i 

01"0[ 0.1 
t t .0  1.0 

0. t  

I o., 
11-~ 0. t  

tooo I t.o 

[~] 

877.8 
51.58 

123o.o 
7.496 

t30.1 
[ 2.203 
11o8.o 

t.289 

:from 
['1 (5.8) ['l 

89 , 18931 I 
5t.28 l 51.t8 I 3.69( 

235.2 1234.6 [ 7.3@ 
7.52tl 7.5071 4.72 

t33.9 1133.8 11t.96 
2.2371 2.2321 7.29 

112.0 1t11.2 120.46 
t.3291 t.322[ 12.76 

"2** 

['] 

4.869 
3.621 
7. t98 
4.658 

i t .  75 
7. t45 

i9.99 
t l  .74 

f r o m  
(5.8) ['l 

4.9 15.07 
3.6 6.06 ~ 
7.3 76.68 
4.7 20.77 

t t . 7  385.8 
7.2 83.45 

20.1 2052.0 
t l . 8  4t8.8 

~ + .  

['] 

14.92 
6.06 

75.64 
20.7t 

376.8 
82.24 

2006 
389.0 

from 
(5,8) 

t4.95 
6.03i 

76.6 
20.74 

377.0 
82.73 
20t7 

390.9 

where ~ij is the Kronecker symbol, and Ti is the viscometric function. 

The formal series of solutions of (2.8) for the displacement function is 

X{' ~ Z 1 , D x i 
,W (t - t ) ' ~  DP 

n~---4) 

and takes the form of the Taylor-series expansion in the reciprocal time. 

In like manner we may write 

Using (6.9) and 

e~j (z', t') 
oo 

= 

. Dt n 

( 6 . 1 0 ) ,  t a k i n g  i n t o  a c c o u n t  f i r s t - o r d e r  t e r m s  we may o b t a i n  

t 

Tik = - -  ~tS~ -4- f ~2 (t - -  t ' )  [e~ q-  (t" - -  t) a~] dt '  q- . . .  

from (1.2). 

Thus, 

(6.9) 

( 6 . 1 0 )  

(6.11) 

Tih = --#Sih Jr (p,eiu -4- ~a~a q- . . . (6.12) 
t 

o h =  ~ a p ( t - - t ' ) d t '  ( 6 . 1 3 )  
- -oo  

t 

~P~= I ( t ' - -O~( t - - r  (6.14> 

Using (1.3) we find 

~0 = ~i -- ~ N (~) & (6.15) 
0 

~2 = -- ~ ~N(T) d~ (6.16) 
0 

r = --~2~ / riod 2 (6.17) 

Equation (2.10) may be reduced to the familiar form for Maxwell and Oldroyd (type B) 
fluids provided we neglect the term (gF) 2. When the initial equation (2.10) was obtained, 
only the linear terms were considered in the expansion of the expression occurring in the 
stress-tensor components, 

~ N (~) 

0 

(6.18) 
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TABLE 3~ 

Fluid model 

Fluid B 
Oldmyd 

M axwelllan f l u i d  

NSecond-order" fluid 

Integral model 

] Fqma,of boundar ~ conditions 
both bound ~ both bound- 
aries free~: aries rigid . 

Oscillatory 

Oscillatory 

Steady-state 
Oscillatory 

Oscillatory 

Steady-state 

Steady-staKe' 

Source 

[17] 
[% 12] 

. IS, ,] 

[18-~o ] 

[19, 2o1 

This corresponds to a fluid having weak elasticity, where N(r) decreases rapidly. As 
was shown in [6], if the elasticity of the fluid is less than the critical value, the 
principle of monotonic perturbation will hold. Replacing (6.18) by the expression for the 
complex viscosity brings out the characteristic features of viscoelastic fluids [9]. In 
this case the problem has been solved for two rigid boundaries and realized in an Odra- 
1204 computer. Table 2 gives the data for the critical parameters. It was assumed that 
the dimensionless quantities satisfy the relationships %+xm+ = %im, %+: = %1(X/d 2) [9]. 

The presence of relaxation time reduces stability; retardation time stabilizes the 
layer. Vest and Arpace [8] took the constitutive Maxwell equation to be sufficient for 
detecti0n of the fundamental effects produced by the influence of viscoelasticity on 
thermalinstability. There is a sharp difference in the behavior of Maxwellian and Old- 
royd fluids [6]. Thus, adequacy of the rheological model adopted is essential for detec- 
tion of an oscillatory instability. 

Although oscillatory instability is theoretically possible, it cannot be observed 
experimentally as has been shown in the publications cited [12]. On the assumption of 
steady-state instability it has been possible to make an experimental determination of 
the maximum Newtonian viscosity, which is a fundamental rheological characteristic of a 
fluid [13-16]. 

Table 3 gives data on the appearance of a convective instability for various models 
of viscoelastic fluids heated from below. 

Fluids having nonlinear viscosity have not been considered here. This property of a 
fluid is a destabilizing factor [14-16]. No investigation was made with simultaneous 
allowance for elasticity and nonlinear viscosity. 

The author wishes to thank A. G. Usmanov for his interest in the study. 
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